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Abstract. The structure of liquid Ge as a function of temperature and density was investigated 
using molecular dynamics and interatomic forces derived from the pseudopotential theory. 
We present results for the pair correlation function, the static structure factor and the bond- 
angle distribution function as a function of temperature and density. Our results are in good 
agreement with diffraction experiments. The density derivative of the structure factor 
deviates from the prediction of the uniform-fluid model due to the density dependence of 
the interatomic potential. The bond-angle distribution shows that the local order in liquid 
G e  is different from that of both the semiconducting and the metallic crystalline phases. 
With progressive undercooling the structure of the liquid does not tend towards the structure 
of amorphous Ge,  because solidification is associated with a metal-semiconductor transition 
resulting in state-dependent interatomic potentials. 

1. Introduction 

In contrast to most other solids the semiconducting elements Si and Ge and the 111-V 
compound semiconductors like GaAs shrink when they melt [ l] .  In the crystalline form 
stable at normal pressures these substances have an open structure with a coordination 
number four. Diffraction experiments [2-61 show that upon melting the number of 
nearest neighbours increases to an average value greater than six. The solid-liquid 
transition is accompanied by a transition from a semiconducting to a metallic state [ 11. 
The metallic melt may be quenched into a semiconducting amorphous state. Under 
pressure both the amorphous and the crystalline semiconductor transform to a metallic 
state [7]. 

The liquid and amorphous forms of Si and Ge have been a subject of extensive 
theoretical studies [8-181. Much of the interest has centred around the problem of 
generating physically reasonable liquid and amorphous structures and to comparing the 
properties of these structures with experimental results. The attempts to calculate the 
structures of liquid Si and Ge may be divided into three different classes. The first group 
of investigations is based on classical potential energy functions including two- and three- 
body interactions [8-141. These classical models were developed by fitting to first- 
principles total-energy calculations for the different polymorphic forms of the crystal 
and for surface and defect configurations, but it is of course difficult to model all known 
structural properties. The fundamental work of Car and Parrinello [15, 161 combines 
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quantum-mechanical density functional theory and molecular dynamics in a unified 
description of the electron-ion system. The third approach is of an intermediate charac- 
ter: linear response theory is used to obtain a systematic decomposition of the potential 
energy function into a volume term and two- and many-body contributions [17,18] and 
these serve as a basis for studies using classical molecular dynamics. 

The physical picture emerging from these studies is quite different from that under- 
lying the construction of the classical potential energy functions. In the classical models 
the potential energy is assumed to consist of two- and three-body contributions (R,, = 

IRI - Rill: 

The two-body potential Q2(R)  is usually assumed to have a deep attractive minimum 
just at the bond length of the crystalline material [8--10]. If the system were in equilibrium 
under the action of these pair forces alone, this would result in a very densely packed 
liquid with coordination numbers around N ,  = 10-11. In order to reduce the coor- 
dination numbers to the value actually observed in liquid Si and Ge, the three-body 
potential Q3(RI2 ,  RI3 ,  0 )  (0is the angle between thevectorsR,,andR,,) must be strongly 
repulsive for small bond angles 0 (0 G 70"), with a minimum close to the tetrahedral 
angle (0 = 110"-115"). Its form for larger bond angles is evidently less important, it 
varies considerably among the different models [%lo]. Note that the three-body forces 
yield a large repulsive contribution to the total energy of the liquid, but only a much 
smaller one to that of the crystal or the amorphous solid. 

From the response theory of the conduction electron gas we learn that the potential 
energy consists of a volume energy, and electron-density-dependent pair and many-ion 
terms (ne is the electron density) 

. .  , R N ) = E l ( n e ) + C . @ 2 ( R , , n e ) +  i < l < k  @'3(Rq>R,k,Rkr,ne). (2) 
1 <I 

It is well known that for all metallic and semiconducting elements and compounds the 
largest contribution to the total energy comes from the volume term El(n,) [19, 201. 
Only for metallic elements with a relatively low electron density the effective interatomic 
potential Q2 has a minimum at the nearest-neighbour distance for close packing. For 
elements with a higher electron density, the first attractive minimum is progressively 
covered by the screened interionic repulsions [20, 211. For Si and Ge this results in an 
interatomic pair potential, which is repulsive close to the nearest-neighbour distance in 
a close-packed structure, and has a strong inflection at smaller distances. In that case it 
will be energetically favourable to distort the nearest-neighbour shell of the close-packed 
structure in such a way that some of the twelve neighbours are pushed inwards to come 
to sit close to the depression in the potential, while the remaining atoms are pushed 
outward towards the minimum. Indeed it is found that the proper coordination number 
of both the crystalline [21] and the liquid phases [17] follows already from the interplay 
of the volume and pair forces. Of course this does not mean that three-body forces are 
unimportant: they influence the triplet correlations, and they are essential for stabilising 
the low-lying transverse acoustic branches characteristic of the group IV elements in the 
diamond structure. 

In this paper we present an investigation of the structure of liquid and supercooled 
liquid Ge, based on pseudopotential-derived interatomic forces and molecular 
dynamics. We find that the structure of liquid G e  is well described on the basis of volume 
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and pair forces alone; structure factor and pair correlation function agree very well with 
the available diffraction data. The characteristic features of liquid Ge are drastically 
sharpened upon supercooling, the structure factor assumes a form intermediate between 
that of liquid Ge at high temperatures and that of amorphous Ge. However, the bond- 
angle distribution retains a peak at small bond angles ( e  = 60") which should not exist 
in semiconducting amorphous Ge. A similar result had been found in molecular dynamics 
simulations based on the Biswas-Hamann potentials [ 131. On the other hand, the small- 
angle peak is absent in structures generated using the Stillinger-Weber potential [ l l ] .  
This shows that a classical parametrisation of the interatomic forces is far from unique- 
even if it is based on an extensive database. Pseudopotential-derived interatomic forces 
could be a useful starting point for a more realistic approach. 

This paper is organised as follows: in § 2 we review very briefly the calculation of the 
interatomic potentials, details of the molecular dynamics calculations are given in Q 3. 
In 0 4 we present the results for liquid and supercooled liquid Ge and we present our 
conclusions in § 5. 

2. Interatomic forces 

For simplicity, our calculation of the interatomic forces is based on a simple empty- 
core pseudopotential-our previous studies of the trends in the crystalline and liquid 
structures of the s, p-bonded elements shows that this is a somewhat simplistic, but 
still adequate approximation. In this case the pair potential @(R) and the volume 
contribution E l  to the ground-state energy are given by the familiar expressions (we use 
atomic units and drop the subscript in the pair potential) 

222 
R 

@(R)  = - (1 + 16 cos2(qR,) ~ i n ( q R ) q - ~  dq  (3) 

E,(n,)  = Z(O.982/Rf - 0.712/R, + 0.031 In R ,  - 0.115) - ,Eion (4) 

where Zis the valence and R, is the radius of a sphere containing on average one electron. 
~ ( q )  and E ( q )  are the susceptibility and the dielectric function of the electron gas, 
calculated in the Ichimaru-Utsumi approximation [22]. The core radius R, = 1.03 au 
has been chosen such as to fit the electronic band structure [20,21]. In previous optimised 
random-phase calculations of the structure of liquid Ge [17] it was found that with this 
value of R, the interatomic potential describes the structure of liquid Ge rather well. 

The interatomic potentials over a wide range of densities are shown in figure 1. At 
densities close to the equilibrium density of the crystalline phase the potential has a 
repulsive bump at the nearest-neighbour distance of a hypothetical FCC phase-clearly 
it will be energetically favourable to form a structure with a lower coordination number, 
distorting the twelvefold coordinated nearest-neighbour shell as indicated in the figure. 
Indeed the energy gain from the rearrangement of the nearest-neighbour shell is of the 
order of the structural energy difference between the FCC and the diamond phases. 

Under compression, the Friedel oscillations move inward and the first inflection in 
@(R) (which is responsible for destabilising the close-packed structures) gradually 
disappears under the strongly repulsive core and the more compact structures are 
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Figure 1. Interatomic pair potential Q(R)  for G e  as a function of the atomic volume. Under 
compression, the first oscillation disappears under the repulsive part of the potential, and 
this drives the trend from an open covalent structure at zero pressure to more close-packed 
metallic structures with increasing compression (see text). 

stabilised. Figure 2 shows the variation of the structural energy differences for a variety 
of crystal structures relative to the diamond structure. In accordance with experiment 
[23] we find that the structural sequence is diamond - P-Sn -+ simple hexagonal (sH). 
The values for the structural energy differences are in reasonable agreement with those 
predicted by first-principles calculations [24] (e.g., A E  (dia - D-Sn) = 0.04-0.05 Ryd/ 
ion a t p  = 0), the predicted transition volume is somewhat too low for the diamond - 0- 
Sn transition, but quite accurate for the p-Sn + SH transition. 

Altogether we find that the simple picture of volume and pair forces describes the 
structural sequence rather well (for earlier second-order pseudopotential calculations 
of the phase transitions in group IV elements and for a more detailed description see 
[20,25,26]). However we should not forget to mention that only the metallic structures 
are stable against lattice vibrations when only two-body forces are assumed. In the 
semiconducting diamond structure three-body forces are necessary to stabilise the low- 
lying transverse acoustic modes. 

3. Molecular dynamics 

The simulations of liquid G e  were carried out for a classical ( N ,  V ,  E )  MD ensemble in a 
cubic box subject to periodic boundaries. The Newtonian equations of motions were 
integrated using a fourth-order predictor-corrector algorithm in the Nordsieck for- 
mulation [27-291 with one iteration in the corrector step. This algorithm is very suitable 
for MD calculations and allows larger time increments than the simpler Verlet algorithm 
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Figure 2. Structural energy differences AE in Ge, relative to the diamond structure: m, P-tin; 
0, simple hexagonal; A, hexagonal-close-packed; A,  double hexagonal-close-packed; 0, 
body-centred cubic; 0,  face-centred cubic. 

[30-321. With a time step of 0.3 X s the total energy remained constant to four 
significant figures during the production runs. 

The calculations were performed for a system of N = 1372 atoms. Parallel runs for 
smaller systems (down to 60 atoms) served to check the system size dependence, with a 
view of creating smaller ensembles which could serve as a basis for electronic structure 
calculations [33]. The structure (i.e. g ( r ) )  was found to be insensitive to a change in the 
system size up to distances where the periodic boundaries became apparent. 

In order to take into account the Friedel oscillations, the pair potential was cut off at 
10.4 A, a relatively large value which means 32.9% of the length of the edge of the MD 
cell 31.6 A. In the rather large MD ensemble we thus obtained a reliable pair correlation 
function on a range up to 15.8 A, which in turn provided a smooth structure factor S(q),  
even in the small-angle region. 
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This cut-off radius leads to an interaction of each particle with an average of 200 
neighbours. To find out these next neighbours in each MD step we developed a method 
we call ‘net-cube approximation of the cut-off sphere’: the MD cell is broken into 63-163 
(or more) identically sized net cubes, with a length of the edge down to a third of the 
cut-off radius. Only net cubes with a non-empty intersection with the cut-off sphere are 
considered. This way, a construction of 13-155 net cubes emerges, which is related to 
the ratio of lengths and the relative position of the actual central particle in its net cube. 
The particles contained in each net cube are stored in a linked list, which is updated for 
every time step. The time-optimised realisation of this idea is rather complicated, but 
for larger numbers of particles it is very effective: the computational time increases 
linearly with N ,  the storage requirement is completely independent of the cut-off radius 
and updating is not performed in intervals of some MD steps only. Some effort was also 
spent on an accurate numerical realisation of the Fourier transform from the pair 
correlation function g(R) to the static structure factor S(q ) .  Our method uses the ‘raw 
data’ from the MD simulation only, without any extrapolation to large values of R .  Some 
new ideas to improve the accuracy of S(q)  for small momentum transfers have been 
implemented. 

(i) Optimal choice of the cut-off R,,, (which means that we do not necessarily use 
the full set of g(R) data). 

(ii) The discrete g(R)  values should be assigned to the centre of the interval over 
which the distances have been sampled. 

(iii) Calculation of S ( q )  for more than the classical arguments obtained by fast 
Fourier transforms. 

A detailed description of the various new technical aspects together with interesting 
parts of the code will be published elsewhere [29]. 

The simulation started with the atoms arranged in an ideal FCC lattice. This choice 
was arbitrary in so far as the equilibrated liquid is independent of the initial configuration. 
The behaviour at the beginning of the simulation, of course, depends heavily on the 
lattice used. 

In the first run the system was molten at 1570 K. As a rule of thumb ‘melting’ was 
observed by means of the melting factor 1281. The initial temperature drifts were adjusted 
by scaling both velocities and third derivatives (for consistency of the system of dif- 
ferential equations) by a common factor; in the same way the temperature was varied 
between the different production runs. 

In the second run 2500 steps were calculated to reach equilibrium. The production 
runs took 600 time steps (1.8 ps), with g(r )  simultaneously calculated. Equilibrium was 
controlled by comparing several successive plots of g ( r )  based on 20 configurations and 
by observing temperature. The resulting data is an average of 100 configurations. 

After the production, the temperature was lowered by a slow-cooling process 
(reduction less than 0.9 K/step) and another 550 steps were calculated to equilibrate the 
system at the new temperature. This procedure was repeated several times down to 
650 K. 

After calculations for the highest density considered (n  = 0.0465 k3, p = 5.650 g 
~ m - ~ )  , we expanded the system and introduced the pair potential corresponding to the 
next lower density (n  = 0.0457 k3). The calculations for this density, which did not 
serve for data in this paper, were used to increase temperature up to 1570 K,  so that the 
next density could be treated like the first one. 

The entire procedure was repeated for several different densities. 
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Figure 3. Pair correlation function g(R)  of liquid and super-cooled liquid Ge as a function 
of temperature and density. 
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Figure 4. Static structure factor S ( q )  of liquid and supercooled liquid Ge as a function of 
temperature and density. 

4. Structure of liquid germanium 

The pair correlation functions and static structure factors for Ge at various temperatures 
including the liquid and supercooled liquid regimes are shown in figures 3 and 4. The 
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correlation functions are very different from those of a normal liquid metal: if R I  is the 
position of the first peak in g(R),  the second peak is usually found at 1.85-1.90R1 (see, 
e.g., Waseda [34]). In liquid Ge the second peak is shifted to 2.25R1, and an intermediate 
peak has appeared at 1.6R1. The position of this peak corresponds exactly to the position 
of the first minimum in the effective pair interaction (cf figure l), and the shift of the 
second peak is also seen to follow the attractive minimum of the pair potential. 
Altogether the complex structure of liquid Ge is found to result from the interplay of 
the geometrical requirements of sphere packing and of the intermediate and long-range 
oscillatory potential. The position of the first peak is set by the diameter of the repulsive 
coreoftheGepseudoatom, a = 2.72 A. Themoredistanrpeaksareset bytheoscillations 
of the pair potential, they appear at distances equal to the Friedel wavelength ,IF = 
2n/2kF = 1.82 A. Only a weak shoulder at the left-hand side of the third peak appears 
at the distance where one would expect the second peak of the correlation function of a 
liquid described in terms of soft-sphere packing. For distances larger than 10 A, the 
interference of the oscillations with different wavelengths ( a  and AF) leads to very rapid 
damping of the oscillations in the correlation functions. 

These arguments are also corroborated by the form of the static structure factor: the 
main peak appears at Q ,  = 2n/a  = 2.3 kl, with a shoulder at Q, = 2n/ilF = 2kF = 
3.4 A-'. Such a correlation between the shoulder in the structure factor and the Fermi 
wavevector in complex polyvalent liquid metals was first pointed out by Beck and Oberle 
[35] ,  see also [17, 181. Let us note that the amplitude of the shoulder in the structure 
factor is rather sensitive to the cut-off radius in the potential. If a cut-off radius smaller 
than 10 A is used, the shoulder is sensibly weaker. 

The comparison of the MD results with x-ray and neutron diffraction data is com- 
plicated by the fact that the agreement between the different experiments is far from 
perfect. For the pair correlation function we find a reasonable agreement with the 
combined experimental data (figure 5(a)) .  In the structure factor we observe a tendency 
to overestimate the shoulder at the expense of the main peak-i.e., the 2kFcorrelations 
relative to the packing correlations (figure S(b)) .  However, these are precisely the points 
where the scatter in the experimental data is largest. 

The nearest-neighbour coordination number may be calculated by integrating over 
the first peak of the correlation function. Unfortunately, there is no general agreement 
as to how precisely this integration should be performed: (i) integration over the radial 
distribution function up to the position of R,,, of the first minimum in g(R) (see figure 
3), (ii) integration up to R,,,, multiplied by two (i.e. integration over the symmetric part 
of the first peak), or (iii) integration over a Gaussian fitted to the first peak. The largest 
coordination number generally follows from method (i). The results are very sensitive 
to the precise value of R,,,, varying R,,, by f 0.126 A (this is the width of the interval 
used for the calculation of the correlation function) changes N ,  on average by 50.4.  At 
T = 980 "C we find N ,  = 7.6, slightly larger than the values derived from the diffraction 
data: N ,  = 6.5 (calculated using method (ii) [3]), N, = 6.8 [2], N ,  = 6.7 [ 5 ] ,  N ,  = 7.1 
[36] (the method used to calculate N, is not specified). With falling temperature and 
decreasing density we find a pronounced decrease of the coordination number (table 1). 

Here it is interesting to make a comparison between the MD results and our earlier 
calculations of the structure of liquid Ge using the optimised random-phase approxi- 
mation (ORPA), based upon the same interatomic potential [17] (figure 6). We find a 
good agreement in general, but again the packing correlations are more expressed in 
the ORPA. The difference between the MD and the ORPA is easily understood: the ORPA 
is a perturbative method. Starting from a hard-sphere reference fluid, corrections for 



Molecular dynamics study of the structure of liquid germanium 973 

- 
N c 

m 

N 

0 



974 A Arnold et al 

Table 1. Nearest-neighbour coordination number N ,  in liquid and supercooled liquid Ge 
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0.0422 7.6 7.5 6.9 6.4 
0.0409 7.0 6.8 6.5 5.9 
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4 ( x - ’ )  
Figure 6. Comparison between the MD simulation (full curves) and the optimised random 
phase approximation (OPRA) [17, 181 (open circles). 

the softness of the repulsive interactions and for the long-range oscillatory interactions 
are added in a perturbation approach. Thus the packing correlations are very strong, 
and it seems that the perturbation calculation does not account for the full effect of the 
oscillatory interactions. 

The explanation of the difference between MD and experiment is more difficult. As 
the calculations overestimate the differences between Ge and a ‘normal’ liquid metal, it 
is not likely that the missing three-body forces are responsible for the difference. On the 
other hand it is known that at these high temperatures the mean free path of the electrons 
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Figure 7. Temperature derivative of the static structure factor aS(q)/aTin liquid and super- 
cooled liquid Ge. The differential dS(q)/aTis approximated by the quotient AS(q)/AT, T = 
T,  - T,. Curve A: TI = 1295"C, T, = 965°C; curve B: T,  = 965°C T2 = 678°C; curve C: 
TI = 678°C; T2 = 382"C, ~t = 0.0435, A T =  TI - T2. 

is finite, and that a finite mean free path yields to a smearing out of the Fermi surface 
singularity in the screening function and a damping of the Friedel oscillations in the 
interatomic potentials [37,38]. 

4.1. Temperature dependence of the structure of liquid germanium 

The structure of liquid Ge is strongly dependent on temperature (figures 3 and 4). This 
is most distinctly expressed in the structure factors: at lower T the shoulder in S ( q )  
becomes a separate peak, and in supercooled liquid Ge, the intensity is even larger than 
that of the first peak (figure 7). Thus supercooled liquid Ge has a structure approaching 
amorphous Ge [39,40]. However, the coordination number is still N ,  2- 6.5, a quench 
to very low temperatures would result not in a semiconducting a-Ge, but in a metallic 
amorphous form (which can be produced in the laboratory only by applying pressure 
[71). 
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Figure 8. Density derivative dS(q)/dn = AS(q)/An,  An = nl  - n2 of the static structure factor 
of liquid Ge at T = 990°C and n = 0.0435 k3, nl  = 0.0450 A-3 ( T ,  = 994"C), n2 = 0.0422 
A-3 (T2 = 989°C) (full curve), compared with the prediction of the uniform fluid model 
dS(q)/an = -(4/3n)(aS(q)/aq) with n = 0.0435 k3, T = 1019°C (broken curve). 

The temperature variation of S ( q )  is strongly non-linear, demonstrating that the 
ordering effects increase progressively with falling temperature. This should also be 
reflected in the thermodynamicfunctions: we expect that the specific heat should increase 
with the degree of undercooling: From our MD results we find C, = 19.5 J mol-' K-' at 
T = 1170 "C, C,  = 21 J mol-' K-' at T = 733 "C, and C, = 25 J mol-' K-' at T = 533 "C. 
The last two values refer to a supercooled liquid. Such a behaviour of the specific heat 
has indeed been observed in supercooled polyvalent liquid metals [41]. 

4.2 .  Density dependence of the structure of liquid Ge 

For most normal liquid metals, the density dependence of the static structure factor is 
well described by the uniform fluid model [42,43], i.e. one has 

Equation (6) expresses the fact that the variation of the liquid structure with density is 
essentially restricted to a scaling of all interatomic distances proportional to q-1/3.  Figure 
8 shows that in liquid G e  there are some characteristic deviations from the uniform fluid 
model which reflect the density dependence of the interatomic potentials: 

(i) the intensity ratio of the two first peaks is inverted (figure 8). Under compression, 
the geometrical packing effects become more important than predicted by the uniform 
fluid model, in agreement with the variation of the pair potential shown in figure 1. 

(ii) The phase difference between aS(q)/an and the prediction of the uniform fluid 
model at larger momentum transfers shows that the outward shift of the oscillations in 
S(q) under compression is smaller than predicted by the simple scaling law (6)-again 
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Figure 9. Bond-angle distribution function f(f3) for liquid and supercooled liquid G e .  The 
distribution of the bond angles in the metallic high-pressure polymorphs with the /3-tin and 
the simple hexagonal structure is given for comparison. The dotted curve at the top shows 
the sinusoidal random distribution. 

this reflects the increase of the effective diameter of the Ge atoms under compression 
(see figure 1). 

4.3. Beyond pair correlations 

A possibility to characterise the local order in a liquid beyond the level of a pair 
correlation function is to consider the bond-angle distribution function f ( 6 ) :  f ( 6 )  gives 
the probability of finding an angle between triplets of particles, the lengths of the 
bonds including the angle being both less than the position of the first minimum in 
the correlation function (figure 9). In liquid Ge we find a double-peaked bond-angle 
distribution, in the undercooled liquid a shoulder develops at 6 = 140". The maximum 
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at 8 = 90" and the position of the shoulder correlate rather well with the bond-angles in 
the metallicp-tin phase of Ge, but the bond angles at 8 = 60" (corresponding to nearest- 
neighbour triplets) are found only in the simple hexagonal high-pressure phase. 

Bond-angle distributions calculated from models based on parametrised two- and 
three-body forces show that the parametrisations are far from unique. With the Biswas- 
Hamann potential function [7] Biswas et a1 [13] calculate a f (0)  similar to ours, with a 
peak near 6' 2- 60" and a second one somewhat closer to the tetrahedral angle. This form 
off(0) is obtained even in a liquid quenched to room temperature. On the other hand 
Broughton and Li [ll] find a bond-angle distribution where the 60" peak is absent even 
in the liquid state. Their calculation is based upon the Stillinger-Weber [9] potential 
function. Both potential functions involve a three-body term which minimises the energy 
of the triplet for a tetrahedral bond angle, but still yield very different bond angle 
distributions. In both papers the authors note that the driving force to amorphisation 
out of the liquid is very small. Amorphisation (i.e. transition to a four-coordinated 
disordered structure) occurs only if the three-body terms are multiplied arbitrarily by a 
factor of at least 2.5 [13]. This supports the argument brought forward in the introduction 
that the interatomic forces in Ge are strongly state-dependent. 

Our results confirm the conclusions drawn on the basis of these results that the 
quenching of liquid Si and Ge does not lead to a glass-transition associated with a metal- 
semiconductor transition unless the changes in the interatomic interactions accompany- 
ing the transitions are taken into account. 

5. Conclusions 

We have presented a molecular dynamical investigation of the structure of liquid and 
supercooled liquid Ge. We find that the complex structure of liquid Ge is well described in 
terms of volume- and density-dependent pair forces, without any adjustable parameter. 
Structure factor and pair correlation function agree well with experimental data-in fact 
better than for most computer-simulations based on parametrised two- and three-body 
forces (see, e.g., [ 121). The characteristic liquid structure arises from the interplay of two 
characteristic distances, the diameter of the repulsive core and the Friedel wavelength of 
the oscillations in the interatomic potentials. 

The density dependence of the structure shows a marked deviation from the uniform 
fluid model, arising from the density dependence of the interatomic potentials. 

The structure varies strongly with temperature. The non-linear increase of the 
ordering effects with progressive undercooling leads to an increasing specific heat, as 
observed in many supercooled polyvalent metals. 

The bond-angle distribution function shows that the local order in liquid Ge is 
different from that in both the semiconducting and the metallic solid phase. This is also 
supported by the electronic structure. The electronic density of states of liquid Ge is 
distinctly different from that of the a -Ge and b-Ge phases, and far from a free-electron 
form [441. Electronic structure calculations based on the present MD model for liquid Ge 
are in-good agreement with recent photoemission data-results will be published soon 
w 1 .  . -  

The structure of undercooled liquid Ge does not tend towards the structure of 
amorphous Ge-in agreement with computer simulations based on parametrised poten- 
tial energy functions. This shows that a proper description of the metal-semiconduction 
transition accompanying solidification is possible only with state-dependent interatomic 
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forces. Not only do the effective two-body forces change with electron density, but with 
a decreasing coordination number the contribution of an sp3-type hybridisation to 
the electronic density of states and hence three-body forces will become much more 
important than in the equilibrium liquid. 
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